8,456 research outputs found

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity

    Get PDF
    The effects of exogenous spermidine (Spd, 1 mmol·L-1) on photosynthetic characteristics, xanthophylls cycle components and endogenous polyamines levels were investigated in cucumber seedlings subjected to salt stress (75 mmol·L-1 NaCl). Chlorophyll contents and net photosynthetic rate (PN) of cucumber seedlings showed a significant decrease under salinity but an increase with exogenous Spd application. Salt stress caused a remarkable decline in the maximum quantum efficiency (Fv/Fm) and the actual efficiency of photosystem II (ФPSⅡ), where an increase was observed in the constitutive loss processes (ΦNO). Application of exogenous Spd significantly decreased ФNO and enhanced regulated non-photochemical energy loss (ФNPQ) in the salt-stressed plants. Spd treatment caused an increase in the size of xanthophyll cycle pool (VAZ) and further enhanced de-epoxidation of the xanthophyll cycle (DEPS) under salt stress. These results suggest that exogenous Spd alleviated salt-mediated decline in photosynthetic efficiency through the enhanced involvement of the energy dissipation that is dependent on the xanthophyll cycle. In addition, foliar spray Spd significantly increased the free, bound and conjugated polyamines in the leaves of the salt stressed plants. Spd also increased the free putrescine (Put)/(Spd+Spm) ratio and decreased bound and conjugated Put/(Spd+Spm) under salinity. Thus, we conclude that Spd can alleviate salt-induced damage on cucumber seedlings by regulating the levels of endogenous polyamines, which was associated with an improvement in the photochemical efficiency of PSII of the salt stressed plants.Key words: Cucumber, endogenous polyamines, photosynthetic characteristics, salt stress, spermidine

    Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi Province based on ISSR marker

    Get PDF
    Genetic diversity of 73 local mulberry varieties from Shanxi Province were screened using ISSR markers, with l5 primers combinations selected for their reproducibility and polymorphism. 129 bands were amplified, of which 115 bands showed polymorphism and the ratio of polymorphism bands was 89.15%. Nei’s genetic similarity coefficients ranged from 0.5891 to 0.9457 with an average of 0.7674. The observed number of alleles of each loci, effective number of alleles of each loci, Nei’s gene diversity, Shannon’s information index were 1.8915, 1.4771, 0.2780 and 0.4197, respectively. Clustering results showed that the 73 varieties could be divided into three different groups and nine subgroups. By using stepwise clustering and random methods and the modified heuristic algorithm, 21 core collections were constructed and the ratio of core collection was 28.77%. The result of t-test to the parameters (the number effective of alleles, Nei's genetic diversity index and Shannon's information index) showed that there was not significant difference between the core collection and initial sample with the exception of the number of observed alleles, that is, the core collection could well represent the initial sample.Key words: Mulberry, germplasm resource, genetic diversity, ISSR, cluster analysis, core collection

    Stability and Startup of Non Linear Loop Circuits

    Get PDF
    The reliable analysis of DC operating point in circuits with positive feedback topology is often challenging, and frequently performed with ad hoc methods. These techniques are often error prone and lead to the frequent use of sub-optimal or unnecessary additional circuits for the stabilization or determination of the operating point (startup circuits). We present a simple and reliable technique for the determination of “stable” circuit solutions, that is based on the use of available circuit simulators and hence takes advantage of accurate device models. The method has been experimentally validated on a self-biasing current generator fabricated with a standard 0.18 μm CMOS process

    Fabrication of robust superhydrophobic surfaces via aerosol-assisted CVD and thermo-triggered healing of superhydrophobicity by recovery of roughness structures

    Get PDF
    Artificial self-healing superhydrophobic surfaces have become a new research hotspot because of their recoverable non-wetting performance and practical perspective. In this paper, a superhydrophobic surface was fabricated by aerosol-assisted layer-by-layer chemical vapor deposition (AA-LbL-CVD) of epoxy resins and PDMS polymer films. The obtained samples still showed superhydrophobicity even after long-term exposure to different pH solutions and UV light irradiation as well as great mechanical stability against sandpaper abrasion and double-sided tape peeling. Importantly, due to the shape memory effect of the polymer films, the as-prepared samples could recover the previously crushed micro–nano structures upon heat treatment to make the surface superhydrophobic, showing thermo-triggered healing of superhydrophobicity

    Neurocognitive Changes among Elderly Exposed to PCBs/PCDFs in Taiwan

    Get PDF
    BACKGROUND: In 1979 approximately 2,000 people were exposed to polychlorinated biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs) due to ingestion of contaminated cooking oil in Taiwan. Although a previous study has shown delayed developmental milestones and poorer neurocognitive functioning in children born to exposed mothers, it is unclear whether neurocognitive functioning was impaired in people who were directly exposed to the PCBs and PDCFs. OBJECTIVE: The objective of this study was to compare neurocognitive functioning in people exposed to PCBs and PCDFs with that of unexposed sex- and age-matched neighbors. METHODS: We conducted a retrospective cohort study among exposed and unexposed subjects >= 60 years of age using prospective outcome measurements. We evaluated neurocognitive tests including cognition, memory modalities, learning, motor and sensory function, mood, and daily activity. RESULTS: In total, 162 (59%) exposed and 151 (55%) reference subjects completed this study. In exposed men, all test results were similar to the reference group; however, exposed women had reduced functioning in attention and digit span (ADS), visual memory span (VMS), and verbal memory recalls (VMR ), especially learning ability. We also found a borderline reduction in the Mini-Mental State Examination. The digit symbol, motor, sensory, depression ( determined by the Geriatric Depression Scale-Short Form), and activity of daily life were not different between the exposed and reference groups. A significant dose-response relationship was found for VMR, ADS, and VMS. CONCLUSION: Our study showed dose-dependent neurocognitive deficits in certain aspects of attention, visual memory, and learning ability in women previously exposed to PCBs and PCDFs, but not in exposed men

    High Defect Nanoscale ZnO Films with Polar Facets for Enhanced Photocatalytic Performance

    Get PDF
    The fabrication of highly efficient photocatalytic thin films has important consequences for self-cleaning, organic pollutant decomposition, and antimicrobial coatings for a variety of applications. Here, we developed a simple synthesis method to produce efficient, high-surface-area zinc oxide (ZnO) photocatalytic films using aerosol-assisted chemical vapor deposition. This approach used mixtures of methanol and acetic acid to promote preferential growth and exposure of polar facets, which favor photocatalytic activity. Interestingly, the initial enhanced efficiency of the films was correlated to structural defects, likely oxygen vacancies, as supported by photoluminescence spectroscopy results. Discussion over the influence of such defects on photocatalytic performance is described, and the need for strategies to develop high-surface-area materials containing stable defects is highlighted

    Solution-Processed Epitaxial Growth of Arbitrary Surface Nanopatterns on Hybrid Perovskite Monocrystalline Thin Films.

    Get PDF
    Semiconductor surface patterning at the nanometer scale is crucial for high-performance optical, electronic, and photovoltaic devices. To date, surface nanostructures on organic-inorganic single-crystal perovskites have been achieved mainly through destructive methods such as electron-beam lithography and focused ion beam milling. Here, we present a solution-based epitaxial growth method for creating nanopatterns on the surface of perovskite monocrystalline thin films. We show that high-quality monocrystalline arbitrary nanopatterns can form in solution with a low-cost simple setup. We also demonstrate controllable photoluminescence from nanopatterned perovskite surfaces by adjusting the nanopattern parameters. A seven-fold enhancement in photoluminescence intensity and a three-time reduction of the surface radiative recombination lifetime are observed at room temperature for nanopatterned MAPbBr3 monocrystalline thin films. Our findings are promising for the cost-effective fabrication of monocrystalline perovskite on-chip electronic and photonic circuits down to the nanometer scale with finely tunable optoelectronic properties

    LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice

    Get PDF
    Root system architecture is very important for plant growth and crop yield. It is essential for nutrient and water uptake, anchoring, and mechanical support. Root growth angle (RGA) is a vital constituent of root system architecture and is used as a parameter for variety evaluation in plant breeding. However, little is known about the underlying molecular mechanisms that determine root growth angle in rice (Oryza sativa). In this study, a rice mutant large root angle1 (lra1) was isolated and shown to exhibit a large RGA and reduced sensitivity to gravity. Genome resequencing and complementation assays identified OsPIN2 as the gene responsible for the mutant phenotypes. OsPIN2 was mainly expressed in roots and the base of shoots, and showed polar localization in the plasma membrane of root epidermal and cortex cells. OsPIN2 was shown to play an important role in mediating root gravitropic responses in rice and was essential for plants to produce normal RGAs. Taken together, our findings suggest that OsPIN2 plays an important role in root gravitropic responses and determining the root system architecture in rice by affecting polar auxin transport in the root tip
    corecore